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There are several recent reports of metal hydride complexes
that form MH‚‚‚HX “dihydrogen” 1 or “hydride-proton” 2 bonds
with hydrogen bond donors HX in an intramolecular3-7 or
intermolecular1,8-10 fashion. Such interactions have the strength,
IR spectral characteristics,1 and electronic structure11 of conven-
tional hydrogen bonds. All of these studies utilized neutral or
cationic complexes. Some of us recently described the synthesis
and properties of anionic hydrides [M(H)3(CO)(PiPr3)2]-, M )
Ru, Os, that interact with cations [K(aza-18-crown-6]+ via
MCO-K and MH‚‚‚HN bonds.12 We show here that the cation
[K(1,10-diaza-18-crown-6)]+ organizes new anionic polyhydride
complexes into a novel 1-dimensional chain in the solid state with
crystallographically well-defined proton-hydride bonds in the
case of the iridium complex. The [K(18-crown-6)]+ salts with
no hydrogen bonds have completely different structures. This
new synthetic strategy is providing materials for the study of the
influence of the ancillary ligands and the metal on these unique
H‚‚‚H bonds.

The complexes1-3 were prepared in 70-80% yield by
reacting OsH2Cl2(PiPr3)2

13 or IrHCl2(PiPr3)2
14 in THF under 1 atm

of H2 with excess potassium hydride and 1 equiv of either 18-
crown-6 or 1,10-diaza-18-crown-615 (eq 1). Deprotonation of

neutral polyhydrides such as IrH5(PiPr3)2
14 provides a second

method of preparation of such complexes as illustrated for
complex4 (eq 2, yield 63%). Complexes1-4 are air- and water-

sensitive, colorless salts.16 The 1H and31P NMR spectra of the
osmium complexes1 and 2 in THF-d8

16 are consistent with a
pentagonal bipyramidal structure with trans phosphines; the
spectra are similar to those reported previously for1 observed in
situ.17 However,2 is much less soluble in THF than1 presumably
because of the propensity of2 to form a one-dimensional solid
(see below). Iridium tetrahydrido anions such as those in3 and
4 have not been reported previously. Anions of3 and4 exist in
THF as a mixture of cis and trans isomers in the ratio of 2:1 and
8:1, respectively. The influence of the type of cation on this ratio
will be discussed in more detail elsewhere. The trans isomer in
each case is characterized by a singlet in the31P{1H} NMR
spectrum and a triplet in the hydride region in the1H NMR
spectrum.16 The cis isomer gives a distinctive A2BB′XX ′ hydride
resonance in the1H NMR and a singlet in the31P{1H} NMR
spectrum.16 Interconversion of the isomers in THF-d8 at 20°
occurs readily but at a rate that is too slow to average NMR
properties.

The non-hydrogen atomic positions as determined by single-
crystal X-ray diffraction of complexes2 and4 are very similar.18

They consist of one-dimensional chains of alternating cations and
anions (Figure 1). In both2 and 4 the potassium diazacrown
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iPr3)2] + H2 (2)

4, Q ) 1,10-diaza-18-crown-6
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cations are oriented so that the two NH groups are directed toward
hydride ligands of two adjacent anions to form Hδ+‚‚‚Hδ- bonds.
For both complexes the transition metal and the potassium are
on crystallographic centers of inversion. The potassium is in the
plane of the crown and forms axial K‚‚‚HC interactions of 3.0 Å
with a hydrogen of two adjacent phosphine methine groups. The
hydride ligands of4 were located and refined while the hydrides
of 2 were not located but probably would be disordered over 10
sites in a similar arrangement to the one reported previously in
the neutron structure determination of IrH5(PiPr3)2 which also
crystallizes with a center of inversion.14 In 4 the trans hydrides
involved in hydride-proton bonding have Ir(1)-H(2IR) distances
of 1.68(3) Å. These distances compare favorably with the average
Ir-H of 1.60 Å determined by neutron diffraction for neutral
complexes. However,4 might be expected to have longer Ir-H
distances than the average because of the high trans influence of
hydride and of their polarization by the protons on the nitrogens.
The refined N-H distances are 0.96(5) Å in2 and 0.77(3) Å in
4. As is usual for X-ray diffraction, these distances are
underestimated relative to the 1.00 Å average N-H value
determined by neutron diffraction.8,19 When 1.00 Å for N-H is
used, the H‚‚‚H distances in the proton-hydride bonds in4 are
about 1.85 Å, shorter than the crystallographically determined
value of 2.07 Å. These distances are slightly longer than the
NH‚‚‚HRe distance of 1.73(1) Å that was determined for the
hydrogen-bonded indole-ReH5(PPh3)3 system by neutron diffrac-
tion.8

The crystalline structures of1 and318 (Figure 2) which lack
hydrogen-bond donors (except for C-H bonds) in the cation are
very different from those of2 and4, even though the conditions
of crystallization (solvent etc) are similar. Complex1 crystallizes
with the cation [K(THF)(18-crown-6)]+ and anion [OsH5(PiPr3)2]-

in Van der Waal’s contact. The pentagon of hydride ligands is
clearly defined with an average Os-H distance of 1.56(4) Å. The
closest distance between a hydride and a hydrogen on the crown
is 2.4 Å. Complex3 crystallizes with a cis anion and a cation
oriented so that the potassium is out of the best plane through

the oxygens of the crown by 0.8 Å and is sitting on threefac
hydrides of the anion. It is noteworthy that [IrH4(PiPr3)2]- is
predominantly cis in THF solution as the [K(18-crown-6)]+ salt
or the [K(diazacrown)]+ salt and is exclusively cis in the solid
state in3. The cis configuration is favorable because it allows
the potassium in the crown to ion pair on a trihydride face of the
octahedron as observed previously for other anionic hydrides in
the solid state20,21and it avoids having two pairs of trans hydrides.
The trans geometry in the crystal of the [K(diazacrown)]+ salt is
adopted to allow the formation of favorable NH‚‚‚HIr contacts.

Proton-hydride bonding in2 and 4 causes changes in the
infrared spectra of powders compared to those of1 and3.16 The
metal-hydride stretching wavenumbers are lower in the presence
of proton-hydride interactions by about 10 cm-1 for 2 and 233
cm-1 for 4. A lowering of ν(Ir-H) in some iridium complexes
containing intramolecular proton-hydride bonds was previously
proposed.1 The effect is particularly pronounced for4 where an
extremely low mode at 1682 cm-1 is present because of the two
sets of mutually trans hydrides. The N-H stretch16 is broader
and lowered by∆ν ) 96 cm-1 in 2 and 132 cm-1 in 4 relative to
the average of theν(N-H) of [K(1,10-diaza-18-crown-6)]BPh4
(3282, 3278 cm-1). A comparable∆ν)141 cm-1 was observed
for the ReH‚‚‚HX interaction in ReH5(PPh3)3‚indole.1 The greater
value of ∆ν for 4 compared to2 is consistent with the greater
basicity of 4. We have independently determined that the pKa

of IrH5(PiPr3)2 is at least 8 units greater than that of OsH6(PiPr3)2

in THF.22 Therefore the more basic anionic hydride has the
stronger proton-hydride interaction. A similar conclusion was
reached in a study of intermolecular proton-hydride bonds with
neutral hydrides in solution.9 The properties of1-4 in solution
will be reported in due course.
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Figure 1. Proton-hydride and K‚‚‚H interactions between ions of4
(distances in Å and angles in deg). Ir-H(1IR) 1.54(3), Ir-H(2IR) 1.68(3),
Ir-P 2.2606(8), K-O av 2.817(3), K-N 2.859(3), N-H(1N) 0.77(3),
H(1N)‚‚‚H(2IR) 2.07, K‚‚‚H(1A) 2.99 Å, H(1IR)-Ir-H(2IR) 89(2),
H(1IR)-Ir-P(1) 89(1), H(1IR)-Ir-P(1)#1 91(1), H(2IR)-Ir-P(1) 95(1),
H(2IR)-Ir-P(1)#1 85(1); all trans angles 180.0°. In isomorphous2, a
disordered OsH5 unit replaces the IrH4 unit. Os-P 2.2931(8), K-O av
2.814(6), K-N 2.878(3), N-H(1N) 0.96(5), H(1N)‚‚‚Os 3.58.

Figure 2. (a) The anion of1. (b) The ion-pair structure of2.
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